Spatio-temporal Image Tracking Based on Optical Flow and Clustering: An Endoneurosonographic Application

نویسندگان

  • Andrés F. Serna-Morales
  • Flavio Augusto Prieto Ortíz
  • Eduardo Bayro-Corrochano
چکیده

On the process of render brain tumors from endoneurosonography, one of the most important steps consists in track the axis line of an ultrasound probe throughout successive endoscopic images. Recognizing of this line is important because it allows computing its 3D coordinates using the projection matrix of the endoscopic cameras. In this paper we present a method to track an ultrasound probe in successive endoscopic images without relying on any external tracking system. The probe is tracked using a spatio-temporal technique based on optical flow and clustering algorithm. Firstly, we compute the optical flow using the Horn-Schunck algorithm. Secondly, a feature space using the optical flow magnitude and luminance is defined. Thirdly, feature space is partitioned in two regions using the k-means clustering algorithm. After this, we calculate the axis line of the ultrasound probe using Principal Component Analysis (PCA) over segmented region. Finally, a motion restriction is defined over consecutive frames in order to avoid tracking errors. We have used endoscopic images from brain phantoms to evaluate the performance of the proposed method, we compare our methodology against ground truth and a based–color particle filter, and our results show that it is robust and accurate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Action recognition using length-variable edge trajectory and spatio-temporal motion skeleton descriptor

Representing the features of different types of human action in unconstrained videos is a challenging task due to camera motion, cluttered background, and occlusions. This paper aims to obtain effective and compact action representation with length-variable edge trajectory (LV-ET) and spatio-temporal motion skeleton (STMS). First, in order to better describe the long-term motion information for...

متن کامل

Unsupervised Spatio-Temporal Segmentation with Sparse Spectral-Clustering

Spatio-temporal cues are powerful sources of information for segmentation in videos. In this work we present an efficient and simple technique for spatio-temporal segmentation that is based on a low-rank spectral clustering algorithm. The complexity of graphbased spatio-temporal segmentation is dominated by the size of the graph, which is proportional to the number of pixels in a video sequence...

متن کامل

Robot Motion Vision Pait I: Theory

A direct method called fixation is introduced for solving the general motion vision problem, arbitrary motion relative to an arbitrary environment. This method results in a linear constraint equation which explicitly expresses the rotational velocity in terms of the translational velocity. The combination of this constraint equation with the Brightness-Change Constraint Equation solves the gene...

متن کامل

Computation Optical Flow Using Pipeline Architecture

Accurate estimation of motion from time-varying imagery has been a popular problem in vision studies, This information can be used in segmentation, 3D motion and shape recovery, target tracking, and other problems in scene analysis and interpretation. We have presented a dynamic image model for estimating image motion from image sequences, and have shown how the solution can be obtained from a ...

متن کامل

Robust Tracking with Spatio-Velocity Snakes: Kalman Filtering Approach

Using results from robust Kalman filtering, we present a new Kalman filter-based snake model for tracking of nonrigid objects in combined spatio-velocity space. The proposed model is the stochastic version of the velocity snake, an active contour model for combined tracking of position and velocity of nonrigid boundaries. The proposed model uses image gradient and optical flow measurements alon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010